Aufgabe 1 (*Umlaufzahl*) (4 Punkte)

Sei L_1 der Kreis in \mathbb{R}^2 mit Radius 1 und Mittelpunkt (0,0), und L_2 der Kreis in \mathbb{R}^2 mit Radius 2 und Mittelpunkt (3,0). Sei $c:[0,a]\to L_1\cup L_2\subset\mathbb{R}^2$ eine reguläre C^1 -Kurve mit $c([0,2\pi])=L_1$, $c([2\pi,a])=L_2$, und $c(0)=c(2\pi)=c(a)=(1,0)$. Außerdem sei c nach der Bogenlänge parametrisiert.

- (i) Geben Sie c explicit an (unter anderem müssen Sie a bestimmen).
- (ii) Berechnen Sie n(c, 0), die Umlaufzahl von c um 0.

Aufgabe 2 (*Konvex*) (4 Punkte)

Sei $U \subset \mathbb{R}^n$ offen. Zeigen Sie: U ist konvex $\Leftrightarrow \overline{U}$ ist konvex.

Aufgabe 3 (Fundamentalsatz der Algebra) (4 Punkte)

Jedes komplexe Polynom vom Grad $n \ge 1$ hat mindestens eine Nullstelle $z_0 \in \mathbb{C}$.

Aufgabe 4 (4 Punkte)

Sei $c \in C^2(I, \mathbb{R}^2)$ eine nach der Bogenlänge parametrisierte Kurve. Bezüglich der Einheitsnormalen ν sei die Krümmung κ strikt positiv, d.h. $\kappa(s) > 0$ für alle $s \in I$. Zeigen Sie: Es existiert eine Umparametrisierung $\phi \in C^1(\tilde{I}, I)$ mit $\phi' > 0$, so dass die Funktion $\tilde{\nu} : \tilde{I} \to \mathbb{R}^2$, $\tilde{\nu}(t) = (\cos t, \sin t)$, Einheitsnormale der Kurve $\tilde{c} = c \circ \phi : \tilde{I} \to \mathbb{R}^2$ ist.

(Hinweis: Hauptsatz für ebene Kurven + Beweis)